Artificial Photosynthesis

Catalyzing Sustainable Electrosynthesis

We develop catalysts for sustainable electrosynthesis to address climate change and rising global energy demands. Inspired by natural photosynthesis, which produces the value-added products needed to sustain life from light, water, and carbon dioxide, we use biological design principles to create synthetic molecular electrocatalysts for carbon dioxide capture and conversion as well as nitrogen/phosphorus cycling.

Reviews

  • Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction

    245

    De La Torre, P.; An, L.; Chang, C. J.

    Adv. Mater. 2023, 35, e2302122

  • Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis

    Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis

    200

    Smith, P. T,; Nichols, E. M.; Cao, Z.; Chang, C. J.

    Acc. Chem. Res. 2020, 53, 575–587

  • Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen

    Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen

    140

    Zee, D. Z.; Chantarojsiri, T.; Long, J. R.; Chang, C. J.

    Acc. Chem. Res. 2015, 48, 2027-2036

  • Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions

    Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions

    107

    Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J.

    Chem. Soc. Rev. 2013, 42, 2388-2400

Molecular Catalysis

  • Multifunctional Charge and Hydrogen-Bond Effects of Second-Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO2 in Water Catalyzed by Iron Porphyrins

    Multifunctional Charge and Hydrogen-Bond Effects of Second-Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO2 in Water Catalyzed by Iron Porphyrins

    232

    Narouz, M. R.; De La Torre, P.; An, L.; Chang, C. J.

    Angew. Chem. Int. Ed. 2022, 61, e202207666

  • Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction

    Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction

    231

    De La Torre, P.; Derrick, J. S.; Snider, A.; Smith, P. T.; Loipersberger, M.; Head-Gordon, M.; Chang, C. J.

    ACS Catal. 2022, 12, 8484-8493

  • Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO2 Reduction Catalyzed by Iron Porphyrins

    Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO2 Reduction Catalyzed by Iron Porphyrins

    229

    Derrick, J. S.; Loipersberger, M.; Nistanaki, S. K.; Rothweiler, A. V.; Head-Gordon, M.; Nichols, E. M.; Chang, C. J.

    J. Am. Chem. Soc. 2022, 144, 11656-11663

  • Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials

    Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials

    213

    Derrick, J. S., Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J.

    J. Am. Chem. Soc. 2020, 142, 20489–20501

  • Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins

    Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins

    175

    Nichols, E. M.; Derrick, J. S.; Nistanaki, S. K.; Smith, P. T.; Chang, C. J.

    Chem. Sci. 2018, 9, 2952-2960

  • Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water

    Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water

    139

    Jurss, J. W.; Khnayzer, R. S.; Panetier, J. A.; El Roz, K. A.; Nichols, E. M.; Head-Gordon, M.; Long, J. R.; Castellano, F. N.; Chang, C. J.

    Chem. Sci. 2015, 6, 4954-4972

  • Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    114

    Thoi, V. S.; Kornienko, N.; Margarit, C. G.; Yang, P.; Chang, C. J.

    J. Am. Chem. Soc. 2013, 135, 14413-14424

  • A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation

    A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation

    91

    Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J.

    Science 2012, 335, 698-702

  • Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water

    78

    Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J.

    J. Am. Chem. Soc. 2011, 133, 9212-9215

  • A Molecular Molybdenum-Oxo Catalyst for Generating Hydrogen from Water

    A Molecular Molybdenum-Oxo Catalyst for Generating Hydrogen from Water

    58

    Karunadasa, H. I.; Chang, C. J.; Long, J. R.

    Nature 2010, 464, 1329-1333

Bioinorganic, Organometallic, and Supramolecular Hybrids

  • Supramolecular Enhancement of Electrochemical Nitrate Reduction Catalyzed by Cobalt Porphyrin Organic Cages for Ammonia Electrosynthesis in Water

    244

    An, L.; Narouz, M. R.; Smith, P. T.; De La Torre, P.; Chang, C. J.

    Angew. Chem. Int. Ed. 2023, 62, e202305719

  • Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO2 Reduction

    Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO2 Reduction

    236

    An, L.; De La Torre, P.; Smith, P. T.; Narouz, M. R.; Chang, C. J.

    Angew. Chem. Int. Ed. 2023, 62, e202209396

  • Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide

    Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide

    195

    Smith, P. T.; Kim, Y.; Benke, B. P.; Kim, K.; Chang, C. J.

    Angew. Chem. Int. Ed. 2020, 59, 4902-4907

  • Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO2 Reduction in Water

    Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO2 Reduction in Water

    182

    Smith, P. T.; Benke, B. P.; Cao, Z.; Kim, Y.; Nichols, E. M.; Kim, K.; Chang, C. J.

    Angew. Chem. Int. Ed. 2018, 57, 9684-9688

  • Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO2 Reduction to Formate and Carbon Monoxide through Surface Organometallic Chemistry

    Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO2 Reduction to Formate and Carbon Monoxide through Surface Organometallic Chemistry

    176

    Cao, Z.; Derrick, J. S.; Xu, J.*; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X.; Coperet, C.; Chang, C. J.

    Angew. Chem. Int. Ed. 2018, 57, 4981-4985

  • Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction

    Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction

    168

    Gong, M.; Cao, Z.; Liu, W.*; Nichols, E. M.; Smith, P. T.; Derrick, J. S.; Liu, Y. S.; Liu, J.; Wen, X.; Chang, C. J.

    ACS Cent. Sci. 2017, 3, 1032-1040

  • A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction

    A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction

    152

    Cao, Z.; Kim, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; Yang, P.; Chang, C. J.

    J. Am. Chem. Soc. 2016, 138, 8120-8125

  • Hybrid bioinorganic approach to solar-to-chemical conversion

    Hybrid bioinorganic approach to solar-to-chemical conversion

    143

    Nichols, E. M.; Gallagher, J. J.; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.; Chang, M. C. Y.; Chang, C. J.

    Proc. Natl. Acad. Sci. USA 2015, 112, 11461-11466

  • Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

    Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

    142

    Lin, S.; Diercks, C. S.; Zhang, Y.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J.

    Science 2015, 346, 1208-1213

Design a site like this with WordPress.com
Get started