Transition Metal Signaling and Metalloallostery

Bioinorganic Chemistry Beyond Active Sites

We are advancing a new paradigm of transition metal signaling, where metal nutrients like copper and iron can serve as dynamic signals to regulate protein function by metalloallostery, going beyond their traditional roles as static active site cofactors. We develop activity-based sensing probes for imaging mobile transition metal pools and activity-based proteomics probes for identifying allosteric metal sites in proteins. These chemical tools enable us to decipher the complex biology of sleep, cognition, and obesity in cell, zebrafish, and mouse models. We also develop medicines to target metals as disease vulnerabilities in cancer, neurodegeneration, and metabolic liver disorders. These drug discovery efforts focus on cuproplasia and cuproptosis, newly recognized forms of copper-dependent cell proliferation and cell death, respectively.

Reviews

  • Metalloallostery and Transition Metal Signalling: Bioinorganic Copper Chemistry Beyond Active Sites

    237

    Pham, V. N.; Chang, C. J.

    Angew. Chem. Int. Ed. 2023, 62, e202213644

  • Connecting copper and cancer: from transition metal signalling to metalloplasia

    224

    Ge, E. J.; Bush, A. I.; Casini, A.; Cobine, P. A.; Cross, J. R.; DeNicola, G. M.; Dou, Q. P.; Franz, K. J.; Gohil, V. M.; Gupta, S.; Kaler, S. G.; Lutsenko, S.; Mittal, V.; Petris, M. J.; Polishchuk, R.; Ralle, M.; Schilsky, M. L.; Tonks, N. K.; Vahdat, L. T.; Aelst, L. V.; Xi, D.; Yuan, P.; Brady, D. C.; Chang, C. J.

    Nature Rev. Cancer. 2022, 22, 102–113

  • Bioinorganic Life and Neural Activity: Toward a Chemistry of Consciousness?

    163

    Chang, C. J.

    Acc. Chem. Res. 2017, 50, 535-538

  • Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling

    161

    Ackerman, C. M.; Lee, S.; Chang, C. J.

    Anal. Chem. 2017, 89, 22-41

  • Searching for Harmony in Transition-Metal Signaling

    145

    Chang, C. J.

    Nature Chem. Biol. 2015, 111, 744-747

  • Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    141

    Aron, A. T.; Ramos-Torres, K. M.; Cotruvo, Jr., J. A.; Chang, C. J.

    Acc. Chem. Res. 2015, 48, 2434-2442

Representative Copper Papers

  • ATPase copper transporting beta (ATP7B) is a novel target for improving the therapeutic efficacy of docetaxel by disulfiram/copper in human prostate cancer

    253

    Song, L., Nguyen, V., Xie, J., Jia, S., Chang, C. J., Uchio, E., & Zi, Xiaolin.

    Mol Cancer Ther. 2024, 23, 1-30.

  • Dysfunction in atox-1 and ceruloplasmin alters labile Cu levels and consequently Cu homeostasis in C. elegans

    252

    Weishaupt, A. K., Lamann, K., Tallarek, E., Pezacki, A. T., Matier, C. D., Schwerdtle, T., Aschner, M., Chang, C. J., Stürzenbaum, S. R., & Bornhorst, J.

    Front Mol Biosci. 2024, 11, 1-12.

  • Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools

    Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools

    234

    Pezacki, A. T.; Matier, C. D.; Gu, X.; Kummelstedt, E.; Bond, S. E.; Torrente, L; Jordan-Sciutto, K. L.; DeNicola, G. M.; Su, T. A.; Brady, D. C.; Chang, C. J.

    Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2202736119

  • Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper

    Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper

    208

    Lee, S.; Chung, C. Y.-S.; Liu, P., Craciun, L; Nishikawa, Y.; Bruemmer, K. J.; Hamachi, I.; Saijo, K.; Miller, E. W.; Chang, C. J.

    J. Am. Chem. Soc. 2020, 142, 14993–15003

  • Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism

    Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism

    192

    Chung, C. Y.; Posimo, J. M.; Lee, S.;, Tsang, T.; Davis, J. M.; Brady, D. C.; Chang, C. J.

    Proc. Natl. Acad. Sci. USA 2019, 116, 18285-18294

  • Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system

    Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system

    180

    Xiao, T.; Ackerman, C. M.; Carroll, E. C.; Jia, S.; Hoagland, A.; Chan, J.; Thai, B.; Liu, C. S.; Isacoff, E. Y.; Chang, C. J.

    Nature Chem. Biol. 2018, 14, 655-663

  • In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease

    In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease

    160

    Heffern, M. C.; Park, H. M.; Au-Yeung, H. Y.; Van de Bittner, G. C.; Ackerman, C. M.; Stahl, A. Chang, C. J.

    Proc. Natl. Acad. Sci. USA 2016, 113, 14219-14224

  • Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease

    Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson’s Disease

    151

    Lee, S.; Barin, G.; Ackerman, C. M.; Muchenditsi, A.; Xu, J.; Reimer, J. A.; Lutsenko, S.; Long, J. R.; Chang, C. J.

    J. Am. Chem. Soc. 2016, 138, 7603-7609

  • Copper regulates cyclic-AMP-dependent lipolysis

    Copper regulates cyclic-AMP-dependent lipolysis

    150

    Krishnamoorthy, L.; Cotruvo, Jr., J. A.; Chan, J.; Kaluarachchi, H.; Muchenditsi, A.; Pendyala, V. S.; Jia, S.; Aron, A. T.; Ackerman, C. M.; Vander Wal, M. N.; Guan, T.; Smaga, L. P.; Farhi, S. L.; New, E. J.; Lutsenko, S.; Chang, C. J.

    Nature Chem. Biol. 2016, 12, 586-592

  • Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy

    72

    Dodani, S. C.; Domaille, D. W.; Nam, C. I.; Miller, E. W.; Finney, L. A.; Vogt, S.; Chang, C. J.

    Proc. Natl. Acad. Sci. USA 2011, 108, 5980-5985

Representative Iron Papers

  • In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection

    In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection

    169

    Aron, A. T.; Heffern, M. C.; Lonergan, Z. R.*; Vander Wal, M. N.; Blank, B. R.; Spangler, B.; Zhang, Y.; Park, H. M.; Stahl, A.; Renslo, A. R.; Skaar, E. P.; Chang, C. J.

    Proc. Natl. Acad. Sci. USA 2017, 114, 12669–12674

  • An Endoperoxide Reactivity-Based FRET Probe for Ratiometric Fluorescence Imaging of Labile Iron Pools in Living Cells

    An Endoperoxide Reactivity-Based FRET Probe for Ratiometric Fluorescence Imaging of Labile Iron Pools in Living Cells

    158

    Aron, A. T.; Loehr, M. O.; Bogena, J.; Chang, C. J.

    J. Am. Chem. Soc. 2016, 138, 14338-14346

  • Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-On Fluorescent Probe

    Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-On Fluorescent Probe

    116

    Au-Yeung, H. Y.; Chan, J.; Chantarojsiri, T.; Chang, C. J.

    J. Am. Chem. Soc. 2013, 135, 15165-15173

Design a site like this with WordPress.com
Get started