Publications

  • Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials

    Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials

    213

    Derrick, J. S., Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J.

    J. Am. Chem. Soc. 2020, 142, 20489–20501

  • Magnetotactic Bacteria Accumulate a Large Pool of Iron Distinct from Their Magnetite Crystals

    Magnetotactic Bacteria Accumulate a Large Pool of Iron Distinct from Their Magnetite Crystals

    212

    Amor, M.; Ceballos, A.; Wan, J.; Simon, C. P.; Aron, A. T.; Chang, C. J.; Hellman, F.; Komeili, A.

    Appl. Environ. Microbiol. 2020, 86, e01278–20

  • Applying Genome-wide CRISPR to Identify Known and Novel Genes and Pathways that Modulate Formaldehyde Toxicity

    Applying Genome-wide CRISPR to Identify Known and Novel Genes and Pathways that Modulate Formaldehyde Toxicity

    211

    Zhao, Y.; Wei, L.; Tagmount, A.; Loguinov, A.; Sobh, A.; Hubbard, A.; McHale, C. M.; Chang, C. J.

    Chemosphere 2020, 128701

  • Distinct RNA N-demethylation pathways catalyzed by nonheme iron ALKBH5 and FTO enzymes enable regulation of formaldehyde release rates

    Distinct RNA N-demethylation pathways catalyzed by nonheme iron ALKBH5 and FTO enzymes enable regulation of formaldehyde release rates

    210

    Toh, J. D. W.; Crossley, S. W. M.; Bruemmer, K. J.; Ge, E. J.; He, D.; Iovan, D. A.; Chang, C. J.

    Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 25284-25292

  • Ligand-Directed Approach to Activity-Based Sensing: Developing Palladacycle Fluorescent Probes That Enable Endogenous Carbon Monoxide Detection

    Ligand-Directed Approach to Activity-Based Sensing: Developing Palladacycle Fluorescent Probes That Enable Endogenous Carbon Monoxide Detection

    209

    Morstein, J.; Höfler, D.; Ueno, K.; Jurss, J. W.; Walvoord, R. R.; Bruemmer, K. J.; Rezgui, S. P.; Brewer, T. F.; Saitoe, M.; Michel, B. W.; Chang, C. J.

    J. Am. Chem. Soc. 2020, 142, 15917–15930

  • Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper

    Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper

    208

    Lee, S.; Chung, C. Y.-S.; Liu, P., Craciun, L; Nishikawa, Y.; Bruemmer, K. J.; Hamachi, I.; Saijo, K.; Miller, E. W.; Chang, C. J.

    J. Am. Chem. Soc. 2020, 142, 14993–15003

  • Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond

    Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond

    207

    Bruemmer, K. J.; Crossley, S. W. M.; Chang, C. J.

    Angew. Chem. Int. Ed. 2020, 59, 13734–13762

  • Bioinspiration in light harvesting and catalysis

    Bioinspiration in light harvesting and catalysis

    206

    Proppe, A. H.; Li, Y. C.; Aspuru-Guzik, A.; Berlinguette, C. P.; Chang, C. J.; Cogdell, R.; Doyle, A. G.; Flick, J.; Gabor, N. M.; van Grondelle, R.; Hammes-Schiffer, S.; Jaffer, S. A.; Kelley, S. O.; Leclerc, M.; Leo, K.; Mallouk, T. E.; Narang, P.; Schlau-Cohen, G. S.; Scholes, G. D.; Vojvodic, A.; Yam, V. W.-W.; Yang, J. Y.; Sargent, E. H.

    Nature Rev. Mater. 2020, 59, 1–19

  • An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO2 Reduction Catalyzed by Iron Porphyrin

    An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO2 Reduction Catalyzed by Iron Porphyrin

    205

    Smith, P. T.; Weng, S.; Chang, C. J.

    Inorg. Chem. 2020, 59, 9270–9278

  • Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer

    Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer

    204

    Bruemmer, K. J.; Crossley, S. W. M.; Chang, C. J.Loipersberger, M.; Zee, D. Z.; Panetier, J. A.; Chang, C. J.; Long, J. R.; Head-Gordon, M.Bruemmer, K. J.; Crossley, S. W. M.; Chang, C. J.

    Inorg. Chem. 2020, 59, 8146–8160

  • Iron chaperone PCBP1 protects murine liver from lipid peroxidation and steatosis

    Iron chaperone PCBP1 protects murine liver from lipid peroxidation and steatosis

    203

    Protchenko, O.; Baratz, E.; Jadhav, S.; Li, F.; Shakoury-Elizeh, M.; Gavrilova, O.; Ghosh, M. C.; Cox, J. E.; Maschek, J. A.; Tyurin, V. A.; Tyurina, Y. Y.; Bayir, H.; Aron, A. T.; Chang, C. J.; Kagan, V. E.; Philpott, C. C.

    Hepatology 2020

  • Carbon Monoxide, a Retrograde Messenger Generated in Postsynaptic Mushroom Body Neurons, Evokes Noncanonical Dopamine Release

    Carbon Monoxide, a Retrograde Messenger Generated in Postsynaptic Mushroom Body Neurons, Evokes Noncanonical Dopamine Release

    202

    Ueno, K.; Morstein, J.; Ofusa, K.; Naganos, S.; Suzuki-Sawano, E.; Minegishi, S.; Rezgui, S. P.; Kitagishi, H.; Michel, B. W.; Chang, C. J.; Horiuchi, J.; Saitoe, M.

    J. Neurosci. 2020, 40, 3533–3548

  • Tuning Second Coordination Sphere Interactions in Polypyridyl-Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide

    Tuning Second Coordination Sphere Interactions in Polypyridyl-Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide

    201

    Ueno, K.; Morstein, J.; Ofusa, K.; Naganos, S.; Suzuki-Sawano, E.; Minegishi, S.; Rezgui, S. P.; Kitagishi, H.; Michel, B. W.; Chang, C. J.; Horiuchi, J.; Saitoe, M.Zee, D. Z.; Nippe, M.; King, A. E.; Chang, C. J.; Long, J. F.Ueno, K.; Morstein, J.; Ofusa, K.; Naganos, S.; Suzuki-Sawano, E.; Minegishi, S.; Rezgui, S. P.; Kitagishi, H.; Michel, B. W.; Chang, C. J.; Horiuchi, J.; Saitoe, M.

    Inorg. Chem. 2020, 59, 5206–5217

  • Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis

    Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis

    200

    Smith, P. T,; Nichols, E. M.; Cao, Z.; Chang, C. J.

    Acc. Chem. Res. 2020, 53, 575–587

  • Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation

    Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation

    199

    Elledge, S. K.; Tran, H. L.; Christian, A. H.; Steri, V.; Hann, B.; Toste, F. D.; Chang, C. J.; Wells, J. A.

    Proc. Natl. Acad. Sci. USA 2020, 117, 5733–5740

  • MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling

    MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling

    198

    Venkatesh, D.; O’Brien, N. A,; Zandkarimi, F.; Tong, D. R.; Stokes, M. E.; Dunn, D. E.; Kengmana, E.S.; Aron, A. T.; Klein, A. M.; Csuka, J. M.; Moon, S. H.; Conrad, M.; Chang, C. J.; Lo, D. C.; D’Alessandro, A.; Prives, C.; Stockwell, B. R.

    Genes Dev. 2020, 34, 526–543

  • No available image

    Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis

    197

    Liao, Y.; Zhao, J.; Bulek, K.; Tang, F.; Chen, X.; Cai, G.; Jia, S.; Fox, P. L.; Huang, E.; Pizarro, T. T.; Kalady, M. F.; Jackson, M. W.; Bao, S.; Sen, G. C.; Stark, G. R.; Chang, C.J.; Li, X.

    Nature Commun. 2020, 11, 900-915

  • An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters

    An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters

    196

    Ohata, J.; Krishnamoorthy, L.; Gonzalez, M. A.; Xiao, T.; Iovan, D. A.; Toste, F. D.; Miller, E. W.; Chang, C. J.

    ACS Cent. Sci. 2020, 6, 32-40

  • Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide

    Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide

    195

    Smith, P. T.; Kim, Y.; Benke, B. P.; Kim, K.; Chang, C. J.

    Angew. Chem. Int. Ed. 2020, 59, 4902-4907

  • Oscillatory cAMP signaling rapidly alters H3K4 methylation

    Oscillatory cAMP signaling rapidly alters H3K4 methylation

    194

    Huff, T. C.; Camarena, V.; Sant, D. W.; Wilkes, Z.; Van Booven, D.; Aron, A. T.; Muir, R. K.; Renslo, A. R.; Chang, C. J.; Monje, P. V.; Wang, G.

    Life Sci. Alliance 2019, 3, e201900529

Design a site like this with WordPress.com
Get started