Publications

  • A reactivity-based probe of the intracellular labile ferrous iron pool

    A reactivity-based probe of the intracellular labile ferrous iron pool

    153

    Spangler, B.; Morgan, C. W.; Fontaine, S. D.; Vander Wal, M. N.; Chang, C. J.; Wells, J. A.; Renslo, A. R.

    Nature Chem. Biol. 2016, 12, 680-685

  • A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction

    A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction

    152

    Cao, Z.; Kim, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; Yang, P.; Chang, C. J.

    J. Am. Chem. Soc. 2016, 138, 8120-8125

  • Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease

    Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson’s Disease

    151

    Lee, S.; Barin, G.; Ackerman, C. M.; Muchenditsi, A.; Xu, J.; Reimer, J. A.; Lutsenko, S.; Long, J. R.; Chang, C. J.

    J. Am. Chem. Soc. 2016, 138, 7603-7609

  • Copper regulates cyclic-AMP-dependent lipolysis

    Copper regulates cyclic-AMP-dependent lipolysis

    150

    Krishnamoorthy, L.; Cotruvo, Jr., J. A.; Chan, J.; Kaluarachchi, H.; Muchenditsi, A.; Pendyala, V. S.; Jia, S.; Aron, A. T.; Ackerman, C. M.; Vander Wal, M. N.; Guan, T.; Smaga, L. P.; Farhi, S. L.; New, E. J.; Lutsenko, S.; Chang, C. J.

    Nature Chem. Biol. 2016, 12, 586-592

  • A reactivity-based [18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography

    A reactivity-based [18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography

    149

    Liu, W.; Truillet, C.; Flavell, R. R.; Brewer, T. F.; Evans, M. J.; Wilson, D. M.; Chang, C. J.

    Chem. Sci. 2016, 7, 5503-5507

  • Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed

    Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed

    148

    Tomalin, L. E.; Day, A. M.; Underwood, Z. E.; Smith, G. R.; Pezze, P. D.; Rallis, C.; Patel, W.; Dickinson, B. C.; Bahler, J.; Brewer, T. F.; Chang, C. J.; Shanley, D. P.; Veal, E. A.

    Free Radic. Biol. Med. 2016, 95, 333-348

  • Caged [18F]FDG Glycosylamines for Imaging Acidic Tumor Microenvironments Using Positron Emission Tomography

    Caged [18F]FDG Glycosylamines for Imaging Acidic Tumor Microenvironments Using Positron Emission Tomography

    147

    Flavell, R. R.; Truillet, C.; Regan, M. K.; Ganguly, T.; Blecha, J. E.; Kurhanewicz, J.; VanBrocklin, H. F.; Keshari, K. R.; Chang, C. J.; Evans, M. J.; Wilson, D. M.

    Bioconjugate Chem. 2016, 27, 170-178

  • Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide

    Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide

    146

    Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P.

    J. Am. Chem. Soc. 2015, 137, 14129-14135

  • Searching for Harmony in Transition-Metal Signaling

    145

    Chang, C. J.

    Nature Chem. Biol. 2015, 111, 744-747

  • An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells

    An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells

    144

    Brewer, T. F.; Chang, C. J.

    J. Am. Chem. Soc. 2015, 37, 10886-10889

  • Hybrid bioinorganic approach to solar-to-chemical conversion

    Hybrid bioinorganic approach to solar-to-chemical conversion

    143

    Nichols, E. M.; Gallagher, J. J.; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.; Chang, M. C. Y.; Chang, C. J.

    Proc. Natl. Acad. Sci. USA 2015, 112, 11461-11466

  • Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

    Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

    142

    Lin, S.; Diercks, C. S.; Zhang, Y.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J.

    Science 2015, 346, 1208-1213

  • Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    141

    Aron, A. T.; Ramos-Torres, K. M.; Cotruvo, Jr., J. A.; Chang, C. J.

    Acc. Chem. Res. 2015, 48, 2434-2442

  • Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen

    Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen

    140

    Zee, D. Z.; Chantarojsiri, T.; Long, J. R.; Chang, C. J.

    Acc. Chem. Res. 2015, 48, 2027-2036

  • Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water

    Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water

    139

    Jurss, J. W.; Khnayzer, R. S.; Panetier, J. A.; El Roz, K. A.; Nichols, E. M.; Head-Gordon, M.; Long, J. R.; Castellano, F. N.; Chang, C. J.

    Chem. Sci. 2015, 6, 4954-4972

  • Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity

    Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity

    138

    Chantarojsiri, T.; Sun, Y.; Long, J. R.; Chang, C. J.

    Inorg. Chem. 2015, 54, 5879-5887

  • Chemical Approaches to Discovery and Study of Sources and Targets of Hydrogen Peroxide Redox Signaling Through NADPH Oxidase Proteins

    Chemical Approaches to Discovery and Study of Sources and Targets of Hydrogen Peroxide Redox Signaling Through NADPH Oxidase Proteins

    137

    Brewer, T. F.; Garcia, F. J.; Onak, C. S.; Carroll, K. S.; Chang, C. J.

    Annu. Rev. Biochem. 2015, 84, 765-790

  • Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals

    Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals

    136

    Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C. Y.; Yang, P.

    Nano Lett. 2015, 15, 3634-3639

  • Azide-Based Fluorescent Probes: Imaging Hydrogen Sulfide in Living Systems

    Azide-Based Fluorescent Probes: Imaging Hydrogen Sulfide in Living Systems

    135

    Lin, V. S.; Lippert, A. R.; Chang, C. J.

    Meth. Enzymol. 2015, 554, 63-80 (Chapter 4 in Hydrogen Sulfide in Redox Biology, Part A)

  • No available image

    An oxidative fluctuation hypothesis of aging generated by imaging H2O2 levels in live Caenorhabditis elegans with altered lifespans

    134

    Fu, X.; Tang, Y.; Dickinson, B. C.; Chang, C. J.; Chang, Z.

    Biochem. Biophys. Res. Commun. 2015, 458, 896-900

Design a site like this with WordPress.com
Get started